Permeable Heavy Use Area for Livestock Farms

Presentation for Kitsap County DCD, September 28th, 2006, Lab Test Findings and Calculated Storm Water Performance of a Permeable HUA

Agenda

- Description of the proposed Permeable HUA surface
- Photos and documentation of lab testing
- Description and supporting calculations for application on the Hyatt Property in the Burley Area

Reasons to build a HUA

- Livestock farms have areas where animals concentrate for watering, feeding, bedding, and other purposes.
- In wet weather, livestock will tear up cover vegetation and create deep mud. During storm events, this increases storm runoff laden with fine sediments. It is also a hazard to livestock health.

Typical HUA Description

A best management practice to eliminate these problems is to construct a livestock heavy use area.

Typical construction is a soil separation geotextile overlaid by a 4" layer of 2.5" clean rock for bearing strength, and topped with 4" to 12" layer of 5/8"-minus rock, sand, or wood chips (hog fuel) to cushion the animal's hooves.

The surfacing usually includes fines, and usually cannot be considered to be permeable.

Permeable HUA

- The proposed HUA surface will be constructed like a permeable pavement, with a permeable soil separation geotextile, a 6" (min.) layer of 2.5" clean rock, and topped with a 6" (min.) layer of 5/8" clean crushed rock.
- This surface may either be sloped to allow drainage, or installed flat with an engineered discharge outlet to act as a detention pond.

Lab Testing

- The following photo series shows a lab test to determine the water volume capacity and the rainfall permeability for this proposed surface.
- The gravel used is a 2.5"-minus clean rock and 1"-minus clean rock taken directly from a local quarry's stockpile.

Gravel and Test Buckets marked at 6" and 12" depth

Gravel bucket filled slightly over 6" with 2.5" rock and compacted, Water bucket filled to 6"

Water level = 3-5/8" after filling 2.5" Gravel Bucket to 6" line - Water capacity = 39.6%

2.5" Gravel & Water Buckets after filling Gravel Bucket with water to 6" line

2.5" Gravel placed loose in Orange Bucket after test - Notice additional rock volume w/o compaction

Gravel bucket filled slightly over 6" with 1"-Minus and compacted, Water bucket filled to 6"

Water level = 3-1/2" after filling 1"-minus Gravel Bucket to 6" line - Water capacity = 41.7%

* * 0

1"-minus Gravel placed loose in Orange Bucket after test - Notice additional rock volume w/o compaction

2.5" rock placed and compacted to slightly below 6" level

1"-minus placed on top and compacted to slightly over 12", water bucket filled to 12" - See note (next) -

Note on Rock Levels and Placement

2.5" gravel was placed and compacted at lower than 6", and then 1"-minus was placed. This was to allow for the maximum effect of "chinking", or allowing the 1"- minus to fill as much of the void space on the surface of the 2.5" material as possible.

This was done to simulate a sub-optimal construction for a conservative water volume measurement.

Water level = 7-7/8" after filling Permeable HUA Gravel Bucket to 12" line - Water capacity = 34.4%

2.5" & 1"-minus Gravel placed loose in Orange Bucket after test - Notice additional rock volume w/o compaction

Proposed Hyatt HUA

Existing area measures 2295 sf, or 0.053 acres.

- Kitsap silt loam has slow permeability (0.06"-0.20"/hour), and high water holding capacity.
- Pasture is modeled as a short grass area in good condition with a class D soil (SCS Curve Number=80).
- Constructed Surface is modeled as an impermeable surface (SCS Curve Number = 98) flowing into a detention pond.

24 Hr Storm Event:	2 yr	10 yr	100 yr
Rainfall:	3.0"	4.0"	6.0"

Proposed Hyatt HUA

- Proposed HUA surface will have a minimum 6" base layer of 2.5" clean rock and a minimum 6" top layer of 1" or 5/8" clean rock.
- Site will be dug down 1.0', graded level, and covered with permeable soil separation geotextile. This will allow it to hold water like a detention pond during rain events.

Proposed Hyatt HUA

- A native soil margin will be maintained between the HUA and the existing subdrain running along the downstream side of the HUA.
- An engineered notch control weir will be installed to allow storm water to flow out of the HUA to the sub-drain during storm events.

Storm Runoff Table, Before and after construction

Peak Runoff Rates	Before Construction	After Construction	
2 Yr Storm:	0.06 cfs	0.14 cfs	
10 Yr Storm:	0.10 cfs	0.19 cfs	
100 Yr Storm:	0.19 cfs	0.29 cfs	

Storm Runoff Table, Before and After Construction

Peak Runoff Volumes	Before Construction	After Construction	
2 Yr Storm:	240 cf	533 cf	
10 Yr Storm:	393 cf	724 cf	
100 Yr Storm:	727 cf	1109 cf	

Simulation with WaterWorks

Heavy Use Area measures 2295 sf, 1' deep, with a water holding capacity of 34.4%

Water holding capacity simulated using a pond with infiltration rate of 0.06"/hour and a total volume of 788 cubic feet at 1.0' depth (V = 2295 sf x 1 ft x 34.4%)

Control Notch Weir measures 0.4' wide, 0.6" high, bottom elevation = 0.4' above bottom of HUA.

Level Pool Routing Results:

Description	Match Peak	Inflow Peak	Peak Stage	Peak Outflow
HUA @ 2yr Storm	0.06 cfs	0.14 cfs	0.44'	0.02 cfs
HUA @ 10yr Storm	0.10 cfs	0.19 cfs	0.54'	0.07 cfs
HUA @ 100yr Storm	0.19 cfs	0.29 cfs	0.67'	0.17 cfs

Conclusion:

- This Permeable Heavy Use Area will satisfactorily meet Kitsap County Stormwater Criteria as an engineered detention facility.
- This Permeable HUA will perform well if maintained by collecting animal manure and removing any accumulation of fine gravels near field entrances.